Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Plant Biol ; 79: 102528, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552341

RESUMO

Higher plants efficiently orchestrate rapid systemic responses to diverse environmental stimuli through electric signaling. This review explores the mechanisms underlying two main types of electric signals in plants, action potentials (APs) and slow wave potentials (SWPs), and how new discoveries challenge conventional neurophysiological paradigms traditionally forming their theoretical foundations. Animal APs are biophysically well-defined, whereas plant APs are often classified based on their shape, lacking thorough characterization. SWPs are depolarizing electric signals deviating from this shape, leading to an oversimplified classification of plant electric signals. Indeed, investigating the generation and propagation of plant APs and SWPs showcases a complex interplay of mechanisms that sustain self-propagating signals and internally propagating stimuli, resulting in membrane depolarization, cytosolic calcium increase, and alterations in reactive oxygen species and pH. A holistic understanding of plant electric signaling will rely on unraveling the network of ion-conducting proteins, signaling molecules, and mechanisms for signal generation and propagation.

2.
Plant Biotechnol J ; 22(5): 1299-1311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38124291

RESUMO

Rice yellow mottle virus (RYMV) causes one of the most devastating rice diseases in Africa. Management of RYMV is challenging. Genetic resistance provides the most effective and environment-friendly control. The recessive resistance locus rymv2 (OsCPR5.1) had been identified in African rice (Oryza glaberrima), however, introgression into Oryza sativa ssp. japonica and indica remains challenging due to crossing barriers. Here, we evaluated whether CRISPR/Cas9 genome editing of the two rice nucleoporin paralogs OsCPR5.1 (RYMV2) and OsCPR5.2 can be used to introduce RYMV resistance into the japonica variety Kitaake. Both paralogs had been shown to complement the defects of the Arabidopsis atcpr5 mutant, indicating partial redundancy. Despite striking sequence and structural similarities between the two paralogs, only oscpr5.1 loss-of-function mutants were fully resistant, while loss-of-function oscpr5.2 mutants remained susceptible, intimating that OsCPR5.1 plays a specific role in RYMV susceptibility. Notably, edited lines with short in-frame deletions or replacements in the N-terminal domain (predicted to be unstructured) of OsCPR5.1 were hypersusceptible to RYMV. In contrast to mutations in the single Arabidopsis AtCPR5 gene, which caused severely dwarfed plants, oscpr5.1 and oscpr5.2 single and double knockout mutants showed neither substantial growth defects nor symptoms indicative lesion mimic phenotypes, possibly reflecting functional differentiation. The specific editing of OsCPR5.1, while maintaining OsCPR5.2 activity, provides a promising strategy for generating RYMV-resistance in elite Oryza sativa lines as well as for effective stacking with other RYMV resistance genes or other traits.


Assuntos
Arabidopsis , Oryza , Vírus de Plantas , Oryza/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Arabidopsis/genética , Edição de Genes
3.
Biochemistry ; 63(1): 171-180, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38113455

RESUMO

Genetically encoded sensors enable quantitative imaging of analytes in live cells. Sensors are commonly constructed by combining ligand-binding domains with one or more sensitized fluorescent protein (FP) domains. Sensors based on a single FP can be susceptible to artifacts caused by changes in sensor levels or distribution in vivo. To develop intensiometric sensors with the capacity for ratiometric quantification, dual-FP Matryoshka sensors were generated by using a single cassette with a large Stokes shift (LSS) reference FP nested within the reporter FP (cpEGFP). Here, we present a genetically encoded calcium sensor that employs green apple (GA) Matryoshka technology by incorporating a newly designed red LSSmApple fluorophore. LSSmApple matures faster and provides an optimized excitation spectrum overlap with cpEGFP, allowing for monochromatic coexcitation with blue light. The LSS of LSSmApple results in improved emission spectrum separation from cpEGFP, thereby minimizing fluorophore bleed-through and facilitating imaging using standard dichroic and red FP (RFP) emission filters. We developed an image analysis pipeline for yeast (Saccharomyces cerevisiae) timelapse imaging that utilizes LSSmApple to segment and track cells for high-throughput quantitative analysis. In summary, we engineered a new FP, constructed a genetically encoded calcium indicator (GA-MatryoshCaMP6s), and performed calcium imaging in yeast as a demonstration.


Assuntos
Cálcio , Saccharomyces cerevisiae , Proteínas Luminescentes/química , Cálcio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína Vermelha Fluorescente , Corantes Fluorescentes
4.
Biomolecules ; 12(6)2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35740912

RESUMO

Interactions between physical forces and membrane proteins underpin many forms of environmental sensation and acclimation. Microbes survive osmotic stresses with the help of mechanically gated ion channels and osmolyte transporters. Plant mechanosensitive ion channels have been shown to function in defense signaling. Here, we engineered genetically encoded osmolality sensors (OzTracs) by fusing fluorescent protein spectral variants to the mechanosensitive ion channels MscL from E. coli or MSL10 from A. thaliana. When expressed in yeast cells, the OzTrac sensors reported osmolality changes as a proportional change in the emission ratio of the two fluorescent protein domains. Live-cell imaging revealed an accumulation of fluorescent sensors in internal aggregates, presumably derived from the endomembrane system. Thus, OzTrac sensors serve as osmolality-dependent reporters through an indirect mechanism, such as effects on molecular crowding or fluorophore solvation.


Assuntos
Proteínas de Arabidopsis , Proteínas de Escherichia coli , Canais Iônicos , Proteínas de Membrana , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Concentração Osmolar , Pressão Osmótica
5.
Curr Opin Cell Biol ; 76: 102080, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35430425

RESUMO

Calcium has long been recognized as a preeminent signaling molecule in plants with staggeringly diverse functions. The central mystery has therefore been how a single ion species can fulfill distinct functions while maintaining specificity and fidelity. Part of the answer lies in calcium being the most heavily controlled element in the cytosol, with dedicated transporters for sequestration into the apoplasm and intracellular stores. Controlled release of calcium into the cytosol by ion channels is the initiating step in signal transduction. Calcium-permeable ion channels are therefore important research targets. Recent studies have identified previously unknown channels, revealed atomic structures, and pinpointed locations of channels to specific cells and membranes. Here, we highlight key findings, transformative technologies, and pathways for further discovery.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Citosol/metabolismo , Plantas/metabolismo , Transdução de Sinais
6.
Dev Cell ; 57(4): 451-465.e6, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148835

RESUMO

Wounding is a trigger for both regeneration and defense in plants, but it is not clear whether the two responses are linked by common activation or regulated as trade-offs. Although plant glutamate-receptor-like proteins (GLRs) are known to mediate defense responses, here, we implicate GLRs in regeneration through dynamic changes in chromatin and transcription in reprogramming cells near wound sites. We show that genetic and pharmacological inhibition of GLR activity increases regeneration efficiency in multiple organ repair systems in Arabidopsis and maize. We show that the GLRs work through salicylic acid (SA) signaling in their effects on regeneration, and mutants in the SA receptor NPR1 are hyper-regenerative and partially resistant to GLR perturbation. These findings reveal a conserved mechanism that regulates a trade-off between defense and regeneration, and they also offer a strategy to improve regeneration in agriculture and conservation.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Receptores de Glutamato/metabolismo , Regeneração/fisiologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Plantas/metabolismo , Receptores de Glutamato/genética , Transdução de Sinais/fisiologia
7.
Plant J ; 109(3): 664-674, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783104

RESUMO

Plants use electrical and chemical signals for systemic communication. Herbivory, for instance, appears to trigger local apoplasmic glutamate accumulation, systemic electrical signals, and calcium waves that travel to report insect damage to neighboring leaves and initiate defense. To monitor extra- and intracellular glutamate concentrations in plants, we generated Arabidopsis lines expressing genetically encoded fluorescent glutamate sensors. In contrast to cytosolically localized sensors, extracellularly displayed variants inhibited plant growth and proper development. Phenotypic analyses of high-affinity display sensor lines revealed that root meristem development, particularly the quiescent center, number of lateral roots, vegetative growth, and floral architecture were impacted. Notably, the severity of the phenotypes was positively correlated with the affinity of the display sensors, intimating that their ability to sequester glutamate at the surface of the plasma membrane was responsible for the defects. Root growth defects were suppressed by supplementing culture media with low levels of glutamate. Together, the data indicate that sequestration of glutamate at the cell surface either disrupts the supply of glutamate to meristematic cells and/or impairs localized glutamatergic signaling important for developmental processes.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Desenvolvimento Vegetal/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Desenvolvimento Vegetal/efeitos dos fármacos , Folhas de Planta/genética
8.
Sci Adv ; 7(37): eabg4298, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516872

RESUMO

Glutamate has dual roles in metabolism and signaling; thus, signaling functions must be isolatable and distinct from metabolic fluctuations, as seen in low-glutamate domains at synapses. In plants, wounding triggers electrical and calcium (Ca2+) signaling, which involve homologs of mammalian glutamate receptors. The hydraulic dispersal and squeeze-cell hypotheses implicate pressure as a key component of systemic signaling. Here, we identify the stretch-activated anion channel MSL10 as necessary for proper wound-induced electrical and Ca2+ signaling. Wound gene induction, genetics, and Ca2+ imaging indicate that MSL10 acts in the same pathway as the glutamate receptor­like proteins (GLRs). Analogous to mammalian NMDA glutamate receptors, GLRs may serve as coincidence detectors gated by the combined requirement for ligand binding and membrane depolarization, here mediated by stretch activation of MSL10. This study provides a molecular genetic basis for a role of mechanical signal perception and the transmission of long-distance electrical and Ca2+ signals in plants.

9.
Mol Cell ; 81(15): 3216-3226.e8, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34161757

RESUMO

Glutamate receptor-like channels (GLRs) play vital roles in various physiological processes in plants, such as wound response, stomatal aperture control, seed germination, root development, innate immune response, pollen tube growth, and morphogenesis. Despite the importance of GLRs, knowledge about their molecular organization is limited. Here we use X-ray crystallography and single-particle cryo-EM to solve structures of the Arabidopsis thaliana GLR3.4. Our structures reveal the tetrameric assembly of GLR3.4 subunits into a three-layer domain architecture, reminiscent of animal ionotropic glutamate receptors (iGluRs). However, the non-swapped arrangement between layers of GLR3.4 domains, binding of glutathione through S-glutathionylation of cysteine C205 inside the amino-terminal domain clamshell, unique symmetry, inter-domain interfaces, and ligand specificity distinguish GLR3.4 from representatives of the iGluR family and suggest distinct features of the GLR gating mechanism. Our work elaborates on the principles of GLR architecture and symmetry and provides a molecular template for deciphering GLR-dependent signaling mechanisms in plants.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Animais , Proteínas de Arabidopsis/genética , Sítios de Ligação , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Microscopia Crioeletrônica , Cristalografia por Raios X , Cisteína/metabolismo , Glutationa/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Plantas Geneticamente Modificadas , Domínios Proteicos , Receptores de Glutamato/genética
10.
Plant Cell ; 33(3): 511-530, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33955487

RESUMO

The leaf vasculature plays a key role in solute translocation. Veins consist of at least seven distinct cell types, with specific roles in transport, metabolism, and signaling. Little is known about leaf vascular cells, in particular the phloem parenchyma (PP). PP effluxes sucrose into the apoplasm as a basis for phloem loading, yet PP has been characterized only microscopically. Here, we enriched vascular cells from Arabidopsis leaves to generate a single-cell transcriptome atlas of leaf vasculature. We identified at least 19 cell clusters, encompassing epidermis, guard cells, hydathodes, mesophyll, and all vascular cell types, and used metabolic pathway analysis to define their roles. Clusters comprising PP cells were enriched for transporters, including SWEET11 and SWEET12 sucrose and UmamiT amino acid efflux carriers. We provide evidence that PP development occurs independently from ALTERED PHLOEM DEVELOPMENT, a transcription factor required for phloem differentiation. PP cells have a unique pattern of amino acid metabolism activity distinct from companion cells (CCs), explaining differential distribution/metabolism of amino acids in veins. The kinship relation of the vascular clusters is strikingly similar to the vein morphology, except for a clear separation of CC from the other vascular cells including PP. In summary, our single-cell RNA-sequencing analysis provides a wide range of information into the leaf vasculature and the role and relationship of the leaf cell types.


Assuntos
Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Floema/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética
11.
Plant Physiol ; 187(4): 1893-1914, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34015139

RESUMO

Sucrose, hexoses, and raffinose play key roles in the plant metabolism. Sucrose and raffinose, produced by photosynthesis, are translocated from leaves to flowers, developing seeds and roots. Translocation occurs in the sieve elements or sieve tubes of angiosperms. But how is sucrose loaded into and unloaded from the sieve elements? There seem to be two principal routes: one through plasmodesmata and one via the apoplasm. The best-studied transporters are the H+/SUCROSE TRANSPORTERs (SUTs) in the sieve element-companion cell complex. Sucrose is delivered to SUTs by SWEET sugar uniporters that release these key metabolites into the apoplasmic space. The H+/amino acid permeases and the UmamiT amino acid transporters are hypothesized to play analogous roles as the SUT-SWEET pair to transport amino acids. SWEETs and UmamiTs also act in many other important processes-for example, seed filling, nectar secretion, and pollen nutrition. We present information on cell type-specific enrichment of SWEET and UmamiT family members and propose several members to play redundant roles in the efflux of sucrose and amino acids across different cell types in the leaf. Pathogens hijack SWEETs and thus represent a major susceptibility of the plant. Here, we provide an update on the status of research on intercellular and long-distance translocation of key metabolites such as sucrose and amino acids, communication of the plants with the root microbiota via root exudates, discuss the existence of transporters for other important metabolites and provide potential perspectives that may direct future research activities.


Assuntos
Aminoácidos/metabolismo , Transporte Biológico/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Floema/metabolismo , Plasmodesmos/metabolismo , Açúcares/metabolismo
12.
Plant Physiol ; 187(2): 485-503, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35237822

RESUMO

The understanding of signaling and metabolic processes in multicellular organisms requires knowledge of the spatial dynamics of small molecules and the activities of enzymes, transporters, and other proteins in vivo, as well as biophysical parameters inside cells and across tissues. The cellular distribution of receptors, ligands, and activation state must be integrated with information about the cellular distribution of metabolites in relation to metabolic fluxes and signaling dynamics in order to achieve the promise of in vivo biochemistry. Genetically encoded sensors are engineered fluorescent proteins that have been developed for a wide range of small molecules, such as ions and metabolites, or to report biophysical processes, such as transmembrane voltage or tension. First steps have been taken to monitor the activity of transporters in vivo. Advancements in imaging technologies and specimen handling and stimulation have enabled researchers in plant sciences to implement sensor technologies in intact plants. Here, we provide a brief history of the development of genetically encoded sensors and an overview of the types of sensors available for quantifying and visualizing ion and metabolite distribution and dynamics. We further discuss the pros and cons of specific sensor designs, imaging systems, and sample manipulations, provide advice on the choice of technology, and give an outlook into future developments.


Assuntos
Biologia , Técnicas Biossensoriais/métodos , Proteínas Luminescentes/genética , Plantas/genética , Transporte Biológico , Corantes Fluorescentes , Íons/metabolismo , Imagem Molecular , Transdução de Sinais
13.
Nat Commun ; 11(1): 4082, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796832

RESUMO

The phytohormone ethylene has numerous effects on plant growth and development. Its immediate precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), is a non-proteinogenic amino acid produced by ACC SYNTHASE (ACS). ACC is often used to induce ethylene responses. Here, we demonstrate that ACC exhibits ethylene-independent signaling in Arabidopsis thaliana reproduction. By analyzing an acs octuple mutant with reduced seed set, we find that ACC signaling in ovular sporophytic tissue is involved in pollen tube attraction, and promotes secretion of the pollen tube chemoattractant LURE1.2. ACC activates Ca2+-containing ion currents via GLUTAMATE RECEPTOR-LIKE (GLR) channels in root protoplasts. In COS-7 cells expressing moss PpGLR1, ACC induces the highest cytosolic Ca2+ elevation compared to all twenty proteinogenic amino acids. In ovules, ACC stimulates transient Ca2+ elevation, and Ca2+ influx in octuple mutant ovules rescues LURE1.2 secretion. These findings uncover a novel ACC function and provide insights for unraveling new physiological implications of ACC in plants.


Assuntos
Arabidopsis/metabolismo , Etilenos/metabolismo , Óvulo Vegetal/metabolismo , Tubo Polínico/metabolismo , Aminoácidos Cíclicos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Liases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
14.
Bio Protoc ; 10(19): e3773, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33659430

RESUMO

Genetically encoded biosensors are powerful tools for quantitative visualization of ions and metabolites in vivo. Design and optimization of such biosensors typically require analyses of large numbers of variants. Sensor properties determined in vitro such as substrate specificity, affinity, response range, dynamic range, and signal-to-noise ratio are important for evaluating in vivo data. This protocol provides a robust methodology for in vitro binding assays of newly designed sensors. Here we present a detailed protocol for purification and in vitro characterization of genetically encoded sensors, exemplified for the His affinity-tagged GO-(Green-Orange) MatryoshCaMP6s calcium sensor. GO-Matryoshka sensors are based on single-step insertion of a cassette containing two nested fluorescent proteins, circularly permutated fluorescent green FP (cpGFP) and Large Stoke Shift LSSmOrange, within the binding protein of interest, producing ratiometric sensors that exploit the analyte-triggered change in fluorescence of a cpGFP.

15.
New Phytol ; 223(3): 1353-1371, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31132313

RESUMO

We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth in Arabidopsis thaliana (Col-0). Patch-clamp whole-cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+ ]cyt ). We investigated the pollen-expressed proteins AtSLAH3, AtALMT12, AtTMEM16 and AtCCC as the putative anion transporters responsible for these currents. AtCCC-GFP was observed at the shank and AtSLAH3-GFP at the tip and shank of the PT plasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip of PTs with an anion vibrating probe were significantly lower in slah3-/- and ccc-/- mutants, but unaffected in almt12-/- and tmem16-/- . We further characterised the effect of pH and GABA by patch clamp. Strong regulation by extracellular pH was observed in the wild-type, but not in tmem16-/- . Our results are compatible with AtTMEM16 functioning as an anion/H+ cotransporter and therefore, as a putative pH sensor. GABA presence: (1) inhibited the overall currents, an effect that is abrogated in the almt12-/- and (2) reduced the current in AtALMT12 transfected COS-7 cells, strongly suggesting the direct interaction of GABA with AtALMT12. Our data show that AtSLAH3 and AtCCC activity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linking PT growth modulation by pH, GABA, and [Ca2+ ]cyt through anionic transporters.


Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Fenômenos Eletrofisiológicos , Pólen/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ânions , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cloretos/farmacologia , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Canais Iônicos/metabolismo , Transporte de Íons/efeitos dos fármacos , Modelos Biológicos , Mutação/genética , Nitratos/farmacologia , Pólen/efeitos dos fármacos , Tubo Polínico/efeitos dos fármacos , Tubo Polínico/metabolismo , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Simportadores/metabolismo
16.
Science ; 360(6388): 533-536, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29724955

RESUMO

Compared to animals, evolution of plant calcium (Ca2+) physiology has led to a loss of proteins for influx and small ligand-operated control of cytosolic Ca2+, leaving many Ca2+ mechanisms unaccounted for. Here, we show a mechanism for sorting and activation of glutamate receptor-like channels (GLRs) by CORNICHON HOMOLOG (CNIH) proteins. Single mutants of pollen-expressed Arabidopsis thaliana GLRs (AtGLRs) showed growth and Ca2+ flux phenotypes expected for plasma membrane Ca2+ channels. However, higher-order mutants of AtGLR3.3 revealed phenotypes contradicting this assumption. These discrepancies could be explained by subcellular AtGLR localization, and we explored the implication of AtCNIHs in this sorting. We found that AtGLRs interact with AtCNIH pairs, yielding specific intracellular localizations. AtCNIHs further trigger AtGLR activity in mammalian cells without any ligand. These results reveal a regulatory mechanism underlying Ca2+ homeostasis by sorting and activation of AtGLRs by AtCNIHs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Tubo Polínico/metabolismo , Receptores de Glutamato/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Teste de Complementação Genética , Homeostase , Tubo Polínico/genética , Transporte Proteico , Receptores de Glutamato/genética , Saccharomyces cerevisiae/genética
17.
J Exp Bot ; 2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-29684179

RESUMO

Animal ionotropic glutamate receptors (iGluRs) are ligand-gated channels whose evolution is intimately linked to the one of the nervous system, where the agonist glutamate and co-agonists glycine/D-serine act as neuro-transmitters or -modulators. While iGluRs are specialized in neuronal communication, plant glutamate receptor-like (GLR) homologues have evolved many plant-specific physiological functions, such as sperm signaling in moss, pollen tube growth, root meristem proliferation, innate immune and wound responses. GLRs have been associated with Ca2+ signaling by directly channeling its extracellular influx into the cytosol. Nevertheless, very limited information on functional properties of GLRs is available, and we mostly rely on structure/function data obtained for animal iGluRs to interpret experimental results obtained for plant GLRs. Yet, a deeper characterization and better understanding of plant GLRs is progressively unveiling original and different mode of functions when compared to their mammalian counterparts. Here, we review the function of plant GLRs comparing their predicted structure and physiological roles to the well-documented ones of iGluRs. We conclude that interpreting GLR function based on comparison to their animal counterparts calls for caution, especially when presuming physiological roles and mode of action for plant GLRs from comparison to iGluRs in peripheral, non-neuronal tissues.

19.
Mol Plant ; 8(7): 1103-14, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25749111

RESUMO

Aquaporins are water channel proteins that mediate the fine-tuning of cell membrane water permeability during development or in response to environmental stresses. The present work focuses on the oxidative stress-induced redistribution of plasma membrane intrinsic protein (PIP) aquaporins from the plasma membrane (PM) to intracellular membranes. This process was investigated in the Arabidopsis root. Sucrose density gradient centrifugation showed that exposure of roots to 0.5 mM H2O2 induces significant depletion in PM fractions of several abundant PIP homologs after 15 min. Analyses by single-particle tracking and fluorescence correlative spectroscopy showed that, in the PM of epidermal cells, H2O2 treatment induces an increase in lateral motion and a reduction in the density of a fluorescently tagged form of the prototypal AtPIP2;1 isoform, respectively. Co-expression analyses of AtPIP2;1 with endomembrane markers revealed that H2O2 triggers AtPIP2;1 accumulation in the late endosomal compartments. Life-time analyses established that the high stability of PIPs was maintained under oxidative stress conditions, suggesting that H2O2 triggers a mechanism for intracellular sequestration of PM aquaporins without further degradation. In addition to information on cellular regulation of aquaporins, this study provides novel and complementary insights into the dynamic remodeling of plant internal membranes during oxidative stress responses.


Assuntos
Aquaporinas/metabolismo , Arabidopsis/citologia , Peróxido de Hidrogênio/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Raízes de Plantas/citologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Difusão/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...